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Abstract

This study estimated the heritability of 24-h heart rate variability (HRV) measures, while considering ceiling effects on
HRV at low heart rates during the night. HRV was indexed by the standard deviation of all valid interbeat intervals
(SDNN), the root mean square of differences between valid, successive interbeat intervals (RMSSD), and peak-valley
respiratory sinus arrhythmia (pvRSA). Sleep and waking levels of cardiac vagal control were assessed in 1,003 twins and
285 of their non-twin siblings. Comparable heritability estimates were found for SDNN (46%–53%), RMSSD (49%–
54%), and pvRSA (48%–57%) during the day and night. A nighttime ceiling effect was revealed in 10.7% of participants
by a quadratic relationship between mean pvRSA and the interbeat interval. Excluding these participants did not change
the heritability estimates. The genetic factors influencing ambulatory pvRSA, RMSSD, and SDNN largely overlap. These
results suggest that gene-finding studies may pool the different cardiac vagal indices and that exclusion of participants
with low heart rates is not required.
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Reduced heart rate variability (HRV) is a predictor for all-cause
mortality and adverse cardiovascular events, including atrial fibril-
lation, myocardial infarction, congestive heart failure, and coro-
nary artery disease in premorbid populations and samples of
cardiac patients (Bigger, Jr., Fleiss, Rolnitzky, & Steinman, 1993;
Bigger, Jr., et al., 1992; Bigger, Jr., Hoover, Steinman, Rolnitzky, &
Fleiss, 1990; Buccelletti et al., 2009; Dekker et al., 1997, 2000;
Kleiger, Miller, Bigger, Jr., & Moss, 1987; Singer et al., 1988; Tsuji
et al., 1996; Vikman et al., 2003). A proposed mechanism that can
explain the risk conveyed by low HRV is that it reflects a decrease
in cardiac vagal activity, which increases the chance of arrhythmic
events (La Rovere et al., 2001; Schwartz, Billman, & Stone, 1984;
Schwartz et al., 1988).

A useful noninvasive measure of vagal activity is the HRV
in the respiratory frequency range (0.15–0.4 Hz), also called res-
piratory sinus arrhythmia (RSA). RSA is generated when tonic
firing of motor neurons in the nucleus ambiguous is modulated by
phasic inhibition and excitation coupled to the respiratory cycle

(Berntson, Cacioppo, & Quigley, 1993). This modulation is caused
by connections between the nuclei that control the respiratory
generator in the pre-Bötzinger and Bötzinger complexes and the
vagal motor neurons, which lie in close proximity in the brainstem
(Rekling & Feldman, 1998) and is further influenced by input from
baro-, mechano-, and chemoreceptors. Respiration-autonomic
nervous system (ANS) coupling yields an oscillatory pattern in the
release of acetylcholine in the sinoatrial (SA) node, such that ace-
tylcholine levels increase during expiration and decrease during
inspiration. The effect of this respiratory “gating” (Eckberg, 2003)
is that heart rate increases during inspiration and decreases during
expiration. The effect of the respiratory-related changes in vagal
gating on RSA shows relatively little sensitivity to sympathetic
blockade but is affected in a dose-response way by muscarinic
blockers in humans (Martinmaki, Rusko, Kooistra, Kettunen, &
Saalasti, 2006) and vagal cooling in animals (Katona & Jih, 1975).
This has led to the use of RSA as a proxy for individual differences
in cardiac vagal activity (Berntson et al., 1997; Task Force of the
European Society of Cardiology and the North American Society
of Pacing and Electrophysiology, 1996), although it must be
acknowledged that differences in the sensitivity of the muscarinic
receptor signaling pathway and differences in respiratory behavior
can influence RSA independently of true differences in cardiac
vagal activity (Grossman & Kollai, 1993; Grossman, Wilhelm, &
Spoerle, 2004; Ritz & Dahme, 2006). RSA, therefore, is more
appropriately considered a measure of cardiac vagal control, rather
than of vagal activity.
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RSA can be measured directly from the combined electrocar-
diogram (ECG) and respiration signal as peak-valley RSA
(pvRSA), but two HRV measures derived only from the interbeat
interval (IBI) time series are also often used to index vagal control
over the heart, namely, the standard deviation of all valid IBIs
(SDNN) and the root mean square of differences between valid,
successive IBIs (RMSSD). Age is a major source of interindividual
differences in cardiac vagal control, with younger participants
having higher RSA levels than older participants across the entire
adolescent/adult age range (de Geus, Kupper, Boomsma, &
Snieder, 2007; De Meersman & Stein, 2007; Quilliot, Fluckiger,
Zannad, Drouin, & Ziegler, 2001; Vallejo, Marquez, Borja-Aburto,
Cardenas, & Hermosillo, 2005). Sex, body mass index (BMI), and
lifestyle variables like smoking and regular exercise have also been
shown to affect RSA, although these effects are generally modest
(de Geus et al., 2007; De Meersman & Stein, 2007; McNarry &
Lewis, 2012; Sacknoff, Gleim, Stachenfeld, & Coplan, 1994;
Umetani, Singer, McCraty, & Atkinson, 1998; Valentini & Parati,
2009; van Lien et al., 2011).

In contrast, a substantial portion of the interindividual variance
in RSA appears to be due to genetic variation. Twin studies that
record RSA in quiet resting conditions in the laboratory systemati-
cally reported a significant genetic contribution to RSA (Boomsma,
van Baal, & Orlebeke, 1990; de Geus et al., 2007; Riese et al.,
2006, 2007; Snieder, Boomsma, van Doornen, & de Geus, 1997;
Tank et al., 2001; Tuvblad et al., 2010; Uusitalo et al., 2007; Wang
et al., 2009; Wang, Thayer, Treiber, & Snieder, 2005; Zhang et al.,
2007; Su et al., 2010). Heritability estimates at rest range from 25%
to 71%. Ambulatory studies report heritabilities ranging from 35%
to 65% (Busjahn et al., 1998; Kupper et al., 2004, 2005) and from
35% to 55% when confined to sleeping or sitting conditions only
(Kupper et al., 2004, 2005). Estimates were very similar for Euro-
pean and African Americans (Wang et al., 2005), across the three
different measures used (Goedhart, van der Sluis, Houtveen,
Willemsen, & de Geus, 2007; Kupper et al., 2004), and none of
these twin studies reported a sex difference in heritability or evi-
dence for different genes being expressed in males and females.

Interestingly, three independent studies that measured cardiac
vagal control at rest during a series of mental stressors all reported
increased genetic variance in these measures under stress (de Geus
et al., 2007; Riese et al., 2006; Wang et al., 2009). Compared to the
heritability of resting baseline levels, the genetic contribution to the
variance in measures of vagal control increased on average up to
10–20% when participants were exposed to various stress tasks.

These findings have been taken to suggest that genetic influences
on cardiac vagal control become more pronounced when the par-
ticipant is challenged by mentally and emotionally “engaging”
conditions, that is, they seem to provide evidence of Gene × Stress
interaction (de Geus et al., 2007). This would lead to the prediction
that RSA heritability estimates might vary across an ambulatory
recording day, for instance, by being higher during daytime than at
night. In addition, physical stressors may also give rise to higher
genetic variance, as vagal withdrawal may not be as strong in each
individual. Therefore, across the daytime, heritability of RSA
measures may be lower during sitting conditions than during more
physically active conditions.

Previous ambulatory twin studies have only indirectly
addressed these questions and, importantly, failed to take into
account the key observation that RSA can be paradoxically lowered
at very low heart rates due to ceiling effects (Malik & Camm, 1993;
van Lien et al., 2011). Normally, respiratory gating will result in a
larger difference between the shortest IBI in inspiration and the
longest IBI in expiration if tonic levels of vagal control over the
heart are larger (Berntson et al., 1993; Eckberg, 2003). However,
when cardiac vagal control is very high, a ceiling effect may
prevent the lengthening of the IBI during expiration more than
during inspiration (Malik & Camm, 1993). The biological basis of
this ceiling effect is that high cardiac vagal control causes a large
occupancy of the available muscarinic receptors on the SA node,
and at this level of saturation any further increases in acetylcholine
may no longer linearly increase the IBI as it would at low-to-
moderate levels of cardiac vagal control (illustrated in Figure 1). As
expiration is characterized by higher vagal control than inspiration,
the beats during expiration suffer more strongly from the ceiling
effect than beats during inspiration.

This ceiling effect is expected to cause a quadratic relationship
between IBI and RSA at low heart rates. This quadratic shape
of the IBI-RSA relationship has indeed been found in laboratory
studies inducing variance in vagal control by phenylephrine and
nitroprusside infusion (Goldberger, Challapalli, Tung, Parker, &
Kadish, 2001). More recently, the occurrence of the quadratic
shape was shown under naturalistic settings in 24-h recordings (van
Lien et al., 2011). In a subset of 13 out of 52 participants, with half
of them selected as being engaged in regular vigorous exercise, a
ceiling effect on RSA was found during the nighttime. Based on
these findings, it was hypothesized that cardiac vagal control in
conditions of low heart rate levels will be underestimated by RSA
in participants with a quadratic shape of the IBI-RSA relationship

Figure 1. Graphic representation of the occurrence of a ceiling effect, showing that there is little room left for RSA at very long interbeat intervals
(IBIs).
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compared to participants with a linear shape of the IBI-RSA rela-
tionship (van Lien et al., 2011). Here, we further hypothesize that
the variation in the shape of the IBI-RSA curve may lead to an
underestimation of the heritability of nighttime cardiac vagal
control when it is based on RSA measures.

In this study, we aim to test whether heritability of RSA at night
differs from that of daytime RSA during sitting and physically
active conditions. For this, we use the largest sample with 24-h
ambulatory cardiac recordings to date. We assessed the shape of the
IBI-RSA relationship in 24-h ambulatory recordings of 486
monozygotic (MZ) twins, 517 dizygotic (DZ) twins, and 285 of
their singleton siblings. Based on the scatter plots of the mean of
RSA and IBI in 10-min bins, we made a qualitative distinction
between linear IBI-RSA shapes showing no evidence of ceiling/
saturation effects and quadratic IBI-RSA shapes, suggesting reduc-
tion of RSA at long IBIs through ceiling/saturation effects. First,
heritability of three often-used RSA measures were computed
during sleep and daytime by comparing MZ and DZ/sibling resem-
blance using the established twin methodology (Neale & Cardon,
1992). Next, heritability estimates of these RSA measures were
re-estimated after removing the participants with evidence of
ceiling effects. Furthermore, heritability of pvRSA was estimated
after replacing the nighttime pvRSA values by (a) the maximal
observed pvRSA at the peak of their quadratic IBI-RSA curve, and
(b) the pvRSA value at the longest nighttime IBI obtained from
extrapolating from the linear part of their IBI-RSA curve. Although
these virtual maxima may still underestimate the true level of
cardiac vagal control, they preserve all the participants for the
analysis and may better capture the total genetic variance. The
rationale behind this approach is akin to the correction of blood
pressure in medicated participants by adding the average effect of
the antihypertensive medication to the observed blood pressure.
This was shown to preserve genetic variance compared to remov-
ing participants with medication (Cui, Hopper, & Harrap, 2003).

Our foremost goal was to establish the heritability of RSA
measures across the 24-h period while accounting for ceiling
effects on RSA at low heart rate levels during the night. We
expected the heritability estimates for the nighttime RSA measures
to be significantly moderated by the IBI-RSA shape, such that
heritability of cardiac vagal control is underestimated unless the
ceiling effect is taken into account. As a secondary goal, we tested
the degree of overlap in the genetic factors influencing pvRSA,
RMSSD, and SDNN, and their potential sensitivity to the ceiling
effects. As these measures are all used to capture individual differ-
ences in cardiac vagal control, the expectation is that the genetic
factors influencing them are highly correlated.

Method

Participants

Participants were all registered in the Netherlands Twin Register
and took part in a large cardiac ambulatory monitoring project in
which 24-h recordings were collected in three data collection
waves. A priori reasons for exclusion were pregnancy, heart trans-
plantation, presence of a pacemaker, and known ischemic heart
disease, congestive heart failure, or diabetic neuropathy. We
excluded data of 8 participants showing many arrhythmias. Valid
ambulatory HRV recordings were available for 1,373 participants,
of which 797 participated in the first two waves between 1998 and
2003. Sixty-seven of these participants took part in both waves, as
part of a study on temporal stability of the ambulatory recordings

(Goedhart, Kupper, Willemsen, Boomsma, & de Geus, 2006). In
Wave 3, running between 2010 to 2012, the sample was further
expanded with 576 new participants.

Data for 71 participants (75 recordings) were excluded due to
the use of cardiovascular medication (beta blockers, ATC C07;
cardiac therapy, ATC C01), or antidepressants (ATC N06A) at the
time of the ambulatory assessment. Of the remaining 1,302 partici-
pants, 63 had duplicate ambulatory recordings from which we
selected a single recording only. When the difference in the dura-
tion between the duplicate recordings was greater than or equal to
200 min, the shorter recording was excluded (12 recordings). Next,
preference was given to the recordings of the data collection wave
in which both twins participated, by excluding the recordings for
the wave when only one of the twins participated (25 recordings
excluded). For the remaining duplicate recordings, the recording of
the wave in which most family members participated was retained
(26 recordings excluded).

To simplify genetic modeling, we excluded the third member of
triplets and included a maximum of two singleton brothers and two
singleton sisters per family. Therefore, eleven participants from
larger families were additionally excluded: the third member of a
triplet (N = 1), nine siblings when more than two brothers and two
sisters participated, and one twin who belonged to a second twin
pair in the family. For the latter, we selected the siblings who were
closest in age to the twins. We additionally excluded three partici-
pants who took part in the first two waves while all other family
members participated in the third wave.

The final sample comprised 1,288 participants belonging to 624
families, with 486 MZ twins (210 complete pairs), 517 DZ twins
(205 complete pairs), and 285 non-twin siblings. Mean age was
33.5 years (SD = 9.2 years), and 61.6% of the sample was female.
Zygosity of the twins was determined by DNA typing for 97.9% of
the same-sex twin pairs. For the remaining same-sex pairs,
zygosity was based on survey questions on physical similarity and
the frequency of confusion of the twins by parents, other family
members, and strangers. Agreement between zygosity based on
these items and zygosity based on DNA is 96.1% (Willemsen et al.,
2013). The Medical Ethics Committee of the VU University
Medical Center approved of the study protocol, and all participants
gave written consent before entering the study.

Ambulatory Measurements of Heart Rate and
Heart Rate Variability

For the first two data collection waves, the VU University Ambu-
latory Monitoring System (VU-AMS) version 4.6 was used (VU
University, Amsterdam, The Netherlands, www.vu-ams.nl). This
version of the VU-AMS continuously recorded the ECG and
changes in thoracic impedance (dZ) from a six-electrode configu-
ration (de Geus & van Doornen, 1996; de Geus, Willemsen, Klaver,
& van Doornen, 1995; Riese et al., 2003). The device automatically
detects each R wave in the ECG signal, at which it reads out and
resets a millisecond counter to obtain the heart period time series.
The thoracic impedance (Z), assessed against a constant current of
50 KHz, 350 microamperes, was amplified and led to a precision
rectifier. The rectified signal was filtered at 72 Hz (low-pass) to
give basal impedance Z. Filtering Z at 0.1 Hz (high-pass) supplied
the dZ signal, which was band-pass filtered with 0.1 and 0.4 Hz
cutoffs, after tapering with (sin(x))2, to yield the respiration signal.

The IBI time series was obtained from the ECG by an online
automated R-wave peak detector, where IBI is the interval in mil-
liseconds between two adjacent R waves of the ECG. Artifact
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processing was performed on the IBI data offline. When the IBI
deviated more than 3 SD from the moving mean of a particular
period, it was automatically coded as an artifact, and the IBI was
either rejected during visual inspection or new IBIs were created by
summing too short IBIs, or too long IBIs were split in two IBIs of
equal length.

For the third wave, the 5fs version of the VU-AMS was used,
which improved on the 4.6 version in that it stores the entire ECG
for offline analysis rather than online R-wave peak-detection (van
Dijk et al., 2013). The ECG signal was imported into the
VU-DAMS software (version 3.2, VU University Amsterdam,
www.vu-ams.nl). After automated detection of bad ECG signal
fragments (artifacts), R-wave peak detection was done using a
modified version of the algorithm by Christov (Christov, 2004).
From the R-wave peaks, the IBI time series was again constructed
and visually displayed for interactive correction of missed or incor-
rect R-wave peaks. In addition to the ECG, the 5fs version also
stores the entire dZ at 1000 Hz to obtain the respiration signal. The
dZ signal is filtered using a second order band-pass filter that
passes all frequencies in the range of 0.1 to 0.4 Hz. An exponential
smoothing average technique is then applied on the filtered DZ
signal, which acts as an additional low-pass filter. The output of this
filter is a weighted combination of previous smoothed value and the
newest measured data, or in formula:

S S xt t t= ∗ + −( ) ∗−α α1 1

where St is the smoothed average, α is the tunable smoothing factor
(which is in the range of 0 to 1), xt is the observation at time t, and
St−1 is the previous smoothed value.

Computation of the RSA measures was done in the same way
for all three waves. Combining the IBI time interval series with the
respiration signal extracted from the thorax impedance signal (dZ),
the “peak-valley” RSA method was used to assess pvRSA (de Geus
et al., 1995; Grossman, van Beek, & Wientjes, 1990; Grossman &
Wientjes, 1986). In this method, RSA is scored from the combined
respiration and IBI time series by detecting the shortest IBI during
inspiration and the longest IBI during expiration on a breath-to-
breath basis according to the procedures detailed elsewhere (de
Geus et al., 1995; Houtveen, Groot, & de Geus, 2005; van Lien
et al., 2011). Breathing cycles that showed irregularities like gasps,
breath holding, and coughing were considered invalid and were
removed from further processing. If no shortest or longest IBI
could be detected in inspiration and expiration, respectively, the
breath was either set to missing or to zero when computing the
average per condition for pvRSA. Similar results were found for
pvRSA computed either way, and we employed only one (breaths
set to missing) in further statistical analyses. The two other meas-
ures of RSA were derived from the IBI time series by taking the
standard deviation of all valid IBIs (SDNN) and the root mean
square of differences between valid, successive IBIs (RMSSD):

RMSSD
n

IBI IBIi i
i

i n

=
−

−( ))−
=

=
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1
1

2

Procedure

Participants were visited at home, before starting their normal daily
activities. During a short interview, information on health status and
current medication use was obtained. The VU-AMS was attached
and its operation explained. Participants were instructed to wear the

device the entire day and night up until awakening the next morning.
Instructions were supplied that explained how to respond to poten-
tial alarm beeps (e.g., on loose electrode contacts), and telephone
assistance was available during waking hours. Participants were
requested to keep a diary and to write down a chronological account
of activity, posture, location, and social situation over the time
period. For Wave 1 and 2, this was done every 30 min, for Wave 3
every 60 min. Participants were instructed to refrain from vigorous
exercise during the ambulatory recording day.

Data Reduction

Using the activity diary entries in combination with a visual display
of the output of an inbuilt accelerometer (measuring movement),
the entire 24-h recording was divided into fixed periods. These
periods were coded for posture (supine, sitting, standing, walking,
bicycling), activity (e.g., desk work, dinner, meetings, watching
TV), and physical load (no load, light, intermediate, and heavy).
Minimum duration of periods was 5 min and maximum duration
was 1 h. If periods with similar activity and posture lasted more
than 1 h (e.g., during sleep), they were divided into multiple
periods of maximally 1 h. All periods were classified into three
main ambulatory conditions: (1) lying asleep, (2) sitting during the
day, or (3) mild physical activity (e.g., standing/walking) based on
the dominant posture/activity reported in that period; the exact
timing of changes in posture/activity was verified using the accel-
erometer signal from the ambulatory device.

To determine the shape of the relationship between IBI and
pvRSA, we divided the entire 24-h recording into bins no longer
than 10 min, thereby making a distinction between waking and
sleeping periods. For the majority of the bins (83%), condition
within the bin was uniform. The other bins did not fall within a
single condition because it was not always determined for the entire
bin, or the bin covered more than one condition. The mean IBI and
pvRSA were determined per bin and the correlation across these
IBI and pvRSA means was depicted in a separate scatter plot for
each of the participants in the study. Four examples of the IBI-RSA
relationship are shown in Figure 2 (full set of scatter plots available
upon request from the corresponding author). Significance of the
regression weights (β1 and β2) in the linear and quadratic terms
was tested by the SPSS CURVEFIT procedure. First, automated
classification of the shape was used. To be classified as quadratic,
the β2 parameters had to be significantly different from zero, the
quadratic solution had to explain 20% of the variance in RSA, and
the quadratic solution had to improve on the linear solution by at
least 10% additional explained variance. Two human raters (MN
and GW) independently verified this algorithmic classification of
the scatter plots by visual inspection; a third rater (EG) resolved
remaining discrepancies. For all participants, the intercept and
standardized beta (daytime_slope) of the IBI-RSA curve was
assessed in the waking part of the data, where it was found to be
nonquadratic in all participants.

For IBI, respiration rate, and the three HRV measures (SDNN,
RMSSD, pvRSA), a mean value was computed across the sleep,
sitting, and physically active periods in the recordings. In addition,
two separate measures were computed to index maximal cardiac
vagal control during the night. First, the median value of the six
10-min bins with the highest pvRSA value during the night
(pvRSAmax) was obtained. For participants without ceiling
effects, these bins occurred mostly around the end of the night. For
participants with a ceiling effect, the highest pvRSA values were
obtained in an earlier phase of the night, corresponding to the
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moment of occurrence of the peak in the quadratic IBI-RSA curve.
Second, a virtual pvRSAmax (pvRSAmax_virtual) was calculated
on the basis of the intercept and slope of the daytime IBI-RSA
association during sitting activities, by extrapolating the pvRSA to
the value that would have been obtained at the nighttime 10-min
bin with the longest IBI value (IBImax in seconds) by the following
formula:

pvRSAmax_virtual intercept daytime_slope IBImax= + ∗( ).

The rationale behind this virtual value is that, by extrapolating the
observed daytime IBI-RSA relationship to nighttime RSA, an RSA
value may be obtained that may prove a valid alternative to exclud-
ing data of participants showing ceiling effects.

Statistical Analyses

SDNN and IBImax showed a continuous normal distribution. A
logN (LN) transformation (for pvRSAmax, pvRSAmax_virtual,
pvRSA, and RMSSD) or a squared transformation (for
daytime_slope) was applied to obtain a normal distribution.

Group and Condition Effects

We used a mixed model ANOVA (IBM SPSS 20.0) and included
age, sex, and respiration rate (the latter for pvRSA and RMSSD
only) as covariates and family as a random factor. Respiration rate
was only included as a covariate in the analyses for pvRSA and
RMSSD, because SDNN does not specifically capture HRV related

Figure 2. Representative IBI-RSA curves of three participants without ceiling effects (a, b, c) and one participant with ceiling effects (d). The lines represent
the best fitting linear and quadratic function for each participant.
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to cardiorespiratory coupling. We tested the fixed effects of group
(ceiling vs. no ceiling), ambulatory condition (sleep, sitting, active)
and the Group × Condition interaction. Significant interaction was
followed by post hoc tests of the ceiling effect within each of the
ambulatory conditions. Mixed model ANOVA was also used to test
the effects of group on the two alternative measures of maximal
pvRSA at nighttime, pvRSAmax and pvRSAmax_virtual. Effects
were considered significant when p < .01.

Genetic Analyses

In a twin study, the observed variance can be decomposed into four
possible sources of variance: variance due to additive genetic
effects (A), nonadditive genetic effects (D), common environment
(C) shared by family members, and nonshared or unique environ-
ment (E) (Boomsma & Gabrielli, Jr., 1985). However, in a design
that includes identical twins, fraternal twins, and sibling pairs,
estimates of C and D are confounded, and the observed variances
and covariances only provide sufficient information to model either
an ACE model or an ADE model, but not both. Based on the pattern
of twin and sibling correlations, we chose to model A, C, and E. For
identical twins, fraternal twins, and sibling pairs alike, common
environmental factors are correlated 1.0. Genetic factors are corre-
lated 0.5 in siblings and DZ twins, and 1.0 in MZ twins. By
definition, nonshared, or unique, environmental factors are
uncorrelated in family members.

To answer the question to what extent A, C, and E factors
contribute to the variance in the RSA measures, biometrical
genetic models were fitted to the observed data using the struc-
tural equation modeling program Mx (Neale, Boker, Xie, &
Maes, 2006). First, fully saturated models were fitted for each
variable separately. In these fully parameterized models, means
and variances were estimated freely for both sexes. Then, we
tested for sex differences in means and variances by constraining
these to be equal for males and females and tested whether these
more constrained models led to a significant worse fit to the
data. Next, we tested for heterogeneity of correlations of males
versus females and of fraternal twins versus singletons. The
resulting most parsimonious saturated model indicated to what
extent we could limit the specification of the variance compo-
nents models.

As the individual differences in the ambulatory RSA measures
were expected to be sensitive to three main confounding variables,
differences in age, sex, and respiration rate (de Geus et al., 2007;
De Meersman & Stein, 2007; Eckberg, 2003; Quilliot et al., 2001;
Umetani et al., 1998; Vallejo et al., 2005); the above models spe-
cifically regressed the effects of sex and age on RSA. Respiration
rate was additionally included as a covariate for pvRSA and
RMSSD.

Furthermore, we tested for effects of the version of the ambu-
latory recording device by comparing the means and variances of
the three waves. In keeping with the highly similar strategies used
to obtain the RSA measures, no device version effect was found so
that all three waves were pooled during all genetic modeling. To
examine whether the genetic architecture of the RSA measures
changed from nighttime to daytime and, within the daytime, from
sitting only to more physical active activities, full trivariate genetic
ACE models in Cholesky decomposition were fitted to the mean
values for the three RSA measures separately for the nighttime
sleep, daytime sitting, and daytime physically active periods.
Because the MZ twin correlations were always at least twice as
high as the DZ and non-twin sibling correlations, it is more likely

that familial resemblance derives from genetic factors rather than
from shared environmental influences. The ACE model was there-
fore tested against the nested AE model only. The resulting most
parsimonious model was used to further test the source of the
observed covariance in the different HRV measures. Figure 3
depicts a schematic representation of the full trivariate genetic
model that was fitted to the data.

The significance of A, C, and E factors was tested by comparing
the fit of the more parsimonious nested models to the fit of the full
model using the likelihood ratio (χ2) test in which the difference in
minus twice the logarithm of the likelihood (−2LL) was calculated.
When the χ2 test was significant (p < .01), the more parsimonious
model was considered to fit significantly worse to the data than the
fuller model it was tested against. In addition, Akaike’s Informa-
tion Criterion (AIC = χ2 − 2df) (Akaike, 1987) was calculated for
each model, which offers a quick approach to judging the fit of
nested models. Those with lower values fit better than models with
higher values. For more background information on the heritability
estimation procedures, see de Geus (2010).

To test whether the heritability estimates were significantly
affected by participants whose data showed ceiling effects, the
trivariate genetic analyses were repeated excluding those partici-
pants. As an alternative to correct for a potential underestimation of
the heritability of nighttime vagal control, two additional genetic
analyses were performed on pvRSAmax and pvRSAmax_virtual,
and it was tested whether the heritability estimates for these alter-
native measures were higher compared to the estimates obtained
for uncorrected nighttime pvRSA.

Results

In 52 participants, no valid nighttime recording of the RSA meas-
ures was obtained for at least five 10-min bins. Analyses of the
scatter plots of mean RSA and IBI across the 24-h period in the
remaining 1,236 participants showed a significant quadratic rela-
tionship in 132 participants (10.7%). From Table 1, it can be seen
that the nighttime pvRSA and RMSSD may be underestimated in
these participants. Mixed ANOVA analysis with correction for
family relatedness showed a significant Group × Condition inter-
action for pvRSA, F(2,3061) = 36.20, R2 = 0.64, p < .01; and
RMSSD, F(2,3063) = 17.30, R2 = 0.30, p < .01; but not for
SDNN, F(2,3056) = 3.08, R2 = 0.04, p = .046. Whereas partici-
pants with a ceiling effect due to a quadratic IBI-RSA curve
have a significantly longer IBI throughout the entire recording
(hinting at higher cardiac vagal control) compared to the partici-
pants without a ceiling effect, their pvRSA and RMSSD are only
higher during the two daytime conditions but not at night. Night-
time SDNN appears less affected by the ceiling effect, although
the group differences in HRV values during the night were also
less pronounced compared to the daytime conditions. Previously,
a similar pattern was observed by our group (van Lien et al.,
2011).

Using the maximal observed pvRSA at night still suggests that
the participants with a ceiling effect have comparable cardiac vagal
control (Fgroup = 0.29, R2 = 0.10, p = .588) in spite of their longer
nighttime IBI. Only when the linear relationship between RSA and
IBI was extrapolated to the maximal IBI (pvRSAmax_virtual) was
a higher value found in the ceiling group (Fgroup = 10.47, R2 = 0.84,
p < .01). Daytime_slope for the participants with a ceiling effect
was steeper compared to the daytime_slope of the participants
without a ceiling effect (Fgroup = 12.19, R2 = 0.73, p < .01).
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Twin-Sibling Resemblance and Heritability

Table 2 shows the twin and sibling correlations for all measures.
From the pattern of the correlations, it is clear that there is a
substantial genetic contribution to all measures. The overarching
pattern seen is that DZ and sibling correlations are about half of the
MZ correlations, with the exception of the male DZ correlations,
which are low and suggestive of nonadditivity. Formal testing,
however, showed that the DZ twin and non-twin sibling correlations
were homogeneous (all ps > .01) and could be equalized in further
model fitting. Correlations of MZ males and MZ females also did not
differ significantly, nor did the same-sex DZ and opposite-sex DZ
twin and non-twin sibling correlations (all ps > .01), so no quanti-
tative or qualitative sex differences were modeled.

Table 3a shows the best trivariate models for pvRSA, RMSSD,
and SDNN separately for the sleep, sitting, and physically active
conditions. An AE model provided the best fit. Heritability of
pvRSA was lower at night than during the day, but, as can be seen
from the confidence intervals, the heritability estimates were not
significantly different during sleep, sitting, and active periods. For
RMSSD and SDNN, heritability was also very comparable across all
periods.

Genetic and Unique Environmental Correlations

Table 4a shows significant phenotypic correlations between the
various HRV measures in all three periods. Generally, the pheno-
typic, the genetic, and the unique environmental correlations
between pvRSA and RMSSD, and RMSSD and SDNN, were
higher compared to the phenotypic, genetic, and unique environ-
mental correlations between pvRSA and SDNN for the entire
recording time. A single genetic and unique environmental
factor influenced all three RSA measures, but RMSSD and SDNN
were also influenced by independent genetic and unique environ-
mental factors that did not affect pvRSA. The observed correlation
between the three possible dyads of the RSA measures was for 51%
to 56% attributable to shared genetic factors, and for 44% to 49%
attributable to shared unique environmental factors.

Correcting for Ceiling Effects on Nighttime RSA

To test the impact of the ceiling effects on the RSA measures on the
heritability of cardiac vagal control, we repeated the above
trivariate analysis after excluding participants with the ceiling
effects. Results are depicted in Table 3b. No significant changes in

Figure 3. Example of a path model decomposing trait variance into additive genetic (A), and shared (C) and unique environmental (E) factors in one
twin pair. Unique A, C and E factors load on all three HRV measures. Additionally, A, C and E factors can be shared between the phenotypes. This is depicted
by the “a,” “c” and “e” paths running from the former A, C and E factors of a HRV phenotype to the next (a21, a31, a32, c21, c31, c32, and e21, e31 and
e32). With these paths, the genetic and environmental covariance can be studied. Finally, MZ twins correlate 1.0 regarding the A factor scores because they
are assumed to share all of their genetic material, whereas DZ or sibling pairs correlate 0.5.
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heritability estimates were noticeable after excluding participants
with ceiling effects.

Likewise, excluding the participants with ceiling effects did not
significantly change the phenotypic, the genetic, and the unique
environmental associations between the RSA measures, nor was a
meaningful change observed in the genetic and unique environ-
mental contribution to their covariance (see Table 4b).

Alternative Measures of Nighttime Cardiac Vagal Control

As an alternative measure of nighttime cardiac vagal control,
which might be less sensitive to the impact of ceiling effects,

we used the median value of the six 10-min bins with the
highest RSA value in all participants (Table 5a). This led to herit-
ability estimates that were higher (5%), but not significantly dif-
ferent from those for the pvRSA during the entire sleep period
(Table 3a).

A second alternative replaced the nighttime pvRSA values by
the estimated pvRSAmax (pvRSAmax_virtual) value based on the
daytime linear association of RSA and IBI and extrapolating to the
bin with the longest IBI at night (Table 5b). The heritability esti-
mate now increased 7% compared to the uncorrected nighttime
pvRSA measure, but this increase was again not significant as
confidence intervals still overlapped. For completeness, Table 5c

Table 1. Means (Standard Deviation) for IBI, pvRSA, RMSSD, SDNN, daytime_slope, pvRSAmax, and pvRSAmax_virtual by Ceiling
Status and Ambulatory Condition

Variable
No ceiling effects Ceiling effects

Group difference(1,100 < N < 1,104) (N = 132)

IBI (ms)
Sleep 975.34 (125.42) 1053.08 (165.02) 77.74*
Sitting 804.93 (102.13) 844.62 (115.90) 39.69*
Active 712.60 (87.53) 741.08 (100.49) 28.48*

pvRSA (ms)
Sleep 56.10 (24.43) 54.05 (26.32) −2.05
Sitting 44.49 (17.22) 58.18 (21.98) 13.69*
Active 35.24 (12.63) 44.96 (14.72) 9.72*

RMSSD (ms)
Sleep 53.08 (25.58) 60.31 (31.88) 7.23
Sitting 36.03 (16.61) 51.24 (24.83) 15.21*
Active 29.54 (12.85) 40.24 (18.65) 10.70*

SDNN (ms)
Sleep 91.49 (26.90) 104.21 (31.37) 12.72*
Sitting 68.92 (19.80) 86.82 (25.01) 17.90*
Active 81.73 (21.34) 98.26 (24.89) 16.53*

daytime_slope 108.50 (64.17) 110.84 (65.86) 2.34*
pvRSAmax (ms) 86.03 (34.83) 89.21 (33.42) 3.18
pvRSAmax_virtual (ms) 73.31 (32.45) 89.62 (39.92) 16.31*

Note. All variables were corrected for family relatedness, age, and sex. pvRSA, RMSSD, pvRSAmax, and pvRSAmax_virtual values were additionally
corrected for respiration rate. IBI = interbeat interval; pvRSA = peak-valley respiratory sinus arrhythmia; RMSSD = root mean square of differences
between valid successive IBIs; SDNN = standard deviation of all valid IBIs.
*Significant main effect of ceiling (within ambulatory condition) (p < .01).

Table 2. Twin and Sibling Correlations as Estimated from the Full Saturated Model

MZ twins DZ/sibs male DZ/sibs female Opposite sex sibs

MZM MZF DZM twin/sib-sib DZF twin/sib-sib DOS twin/sib-OS sib

SDNN/sleep1 0.70 0.56 0.17 0.09 0.17 0.21 0.45 0.19
SDNN/sitting1 0.64 0.55 −0.07 0.24 0.49 0.30 0.27 0.38
SDNN/active1 0.65 0.56 0.01 0.31 0.46 0.36 0.35 0.32
RMSSD/ sleep2 0.74 0.60 0.15 0.31 0.17 0.27 0.43 0.29
RMSSD/sitting2 0.58 0.61 0.01 0.34 0.40 0.32 0.26 0.31
RMSSD/active2 0.57 0.50 0.10 0.40 0.27 0.31 0.28 0.30
pvRSA/sleep2 0.69 0.56 0.22 0.26 0.31 0.34 0.34 0.29
pvRSA/sitting2 0.60 0.65 0.07 0.35 0.44 0.33 0.28 0.23
pvRSA/active2 0.68 0.63 0.07 0.46 0.37 0.40 0.35 0.19
pvRSAmax2 0.64 0.64 0.25 0.24 0.30 0.35 0.25 0.28
pvRSAmax_virtual2 0.63 0.72 0.19 0.32 0.44 0.29 0.33 0.34
IBImax1 0.53 0.55 0.17 0.27 0.38 0.27 0.31 0.27
daytime_slope1 0.46 0.48 −0.06 0.21 0.26 0.25 0.20 0.24

Note. SDNN = standard deviation of all valid interbeat intervals (IBIs); RMSSD = root mean square of differences between valid successive IBIs;
pvRSA = peak-valley respiratory sinus arrhythmia; pvRSAmax = median value of the six 10-min bins with the highest pvRSA value during the night;
IBImax = nighttime 10-min bin with the longest IBI value; daytime_slope = slope of the IBI-RSA curve in the waking part of the data;
pvRSAmax_virtual = nonobserved experimental variable that extrapolates the pvRSA from the intercept and slope of the daytime IBI-RSA association
during sitting activities to the value that would have been obtained at the longest IBI value (IBImax); MZM = monozygotic male, MZF = monozygotic
female; DZM = dizygotic male, DZF = dizygotic female, DOS = dizygotic opposite sex, sib = non-twin sibling.
1corrected for age, sex. 2corrected for age, sex, respiration rate.
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and 5d also present the heritability of the daytime_slope and
(nighttime) IBImax.

Discussion

Using a twin family design, this paper shows that genetic factors
explain around half of the individual differences in ambulatory
cardiac vagal control as measured by pvRSA, RMSSD, or SDNN.
Our expectation that the heritability estimates for the nighttime
RSA measures would be significantly affected by the IBI-RSA
shape, such that heritability of cardiac vagal control is underesti-
mated at low heart rates at nighttime, was not supported by the
data. In spite of significant changes in mean RSA values across the
24-h period, there was no evidence for differences in heritability of
cardiac vagal control at night compared to daytime conditions,
and, during daytime conditions, heritability was very comparable
between sitting-only conditions and conditions in which partici-
pants were physically active. The genetic factors influencing ambu-
latory pvRSA, RMSSD, and SDNN largely overlapped, providing
support for the idea that pvRSA, RMSSD, and SDNN capture
the same biological phenomenon. Nonetheless, the overlap in
genetic factors influencing pvRSA and RMSSD was higher than

the overlap in the genetic factors shared between pvRSA and
SDNN.

Earlier twin studies on the heritability of HRV were mainly
based on laboratory recordings, and the heritability estimates that
were found varied substantially between conditions and across the
different HRV measures that were used. Laboratory studies
reported heritability estimates of pvRSA in resting conditions
between 25% to 39% (Boomsma et al., 1990; de Geus et al., 2007;
Snieder et al., 1997; Tuvblad et al., 2010). Estimates for resting
RMSSD values in the laboratory ranged from 36% to 71%
(Uusitalo et al., 2007; Wang et al., 2005, 2009). Only one labora-
tory study researched resting SDNN and estimated heritability to
be 66% (Wang et al., 2005). These resting laboratory levels can be
best approximated by the sitting-only condition in our sample.
Heritability of sitting-only pvRSA was estimated at 53%, RMSSD
at 54%, and SDNN at 48%.

During (mental) stress, laboratory studies reported increases in
heritability of pvRSA and RMSSD of 8% to 23% when compared
to heritability estimates of resting levels (de Geus et al., 2007;
Wang et al., 2009), suggesting that more genetic variance is
expressed under conditions in which participants were aroused.
This Gene × Stress interaction that was observed in controlled

Table 3. Proportion of Variance and Confidence Intervals (CI) Due to A and Due to E

3a. Full sample (1,232 < N < 1,288)

Condition Model df Model AIC −2LL vs. Δχ2 Δ df p Phenotype A E

Sleep 1 3669 ACE 3632.224 10970.224
2 3675 AE 3620.358 10970.358 1 0.135 6 1 pvRSA 0.48 (0.37–0.57) 0.52 (0.43–0.63)

RMSSD 0.53 (0.43–0.61) 0.47 (0.39–0.57)
SDNN 0.46 (0.36–0.56) 054 (0.44–0.65)

Sitting 1 3831 ACE 2488.129 10150.129
2 3837 AE 2477.869 10151.869 1 1.740 6 .942 pvRSA 0.53 (0.44–0.62) 0.47 (0.38–0.56)

RMSSD 0.54 (0.45–0.62) 0.46 (0.38–0.55)
SDNN 0.48 (0.39–0.57) 0.52 (0.43–0.61)

Active 1 3834 ACE 2830.663 10498.663
2 3840 AE 2823.792 10503.792 1 5.129 6 .527 pvRSA 0.57 (0.48–0.65) 0.43 (0.35–0.52)

RMSSD 0.49 (0.40–0.57) 0.51 (0.43–0.60)
SDNN 0.53 (0.45–0.60) 0.47 (0.40–0.55)

Note. df = degrees of freedom; Model = specification of the model that is tested; AIC = Akaike’s Information Criterion; −2LL = minus twice the logarithm
of the likelihood; vs. = the model against which this submodel is tested; Δχ2 = model fit statistic: difference in −2LL of two nested models; Δdf = difference
in the number of parameters between the two models; p = p value; phenotype = specification of the HRV parameter; A and E = proportions of variance
explained by additive and unique environmental effects for the most parsimonious AE model; pvRSA = peak-valley respiratory sinus arrhythmia;
RMSSD = root mean square of differences between valid successive interbeat intervals (IBIs); SDNN = standard deviation of all valid IBIs.

3b. Excluding the Participants with a Ceiling Effect (1,100 < N < 1,104)

Condition Model df Model AIC −2LL vs. Δχ2 Δ df p Phenotype A E

Sleep 1 3273 ACE 3144.299 9690.299
2 3279 AE 3132.299 9690.299 1 0 6 1 pvRSA 0.53 (0.42–0.63) 0.47 (0.37–0.58)

RMSSD 0.53 (0.42–0.63) 0.47 (0.38–0.58)
SDNN 0.47 (0.35–0.57) 053 (0.43–0.65)

Sitting 1 3282 ACE 2017.696 8581.696
2 3288 AE 2006.158 8582.158 1 0.462 6 .998 pvRSA 0.57 (0.46–0.66) 0.43 (0.34–0.54)

RMSSD 0.52 (0.41–0.61) 0.48 (0.39–0.59)
SDNN 0.46 (0.35–0.56) 0.54 (0.44–0.65)

Active 1 3282 ACE 2327.274 8891.274
2 3288 AE 2327.386 8903.386 1 12.112 6 .060 pvRSA 0.57 (0.47–0.66) 0.43 (0.34–0.53)

RMSSD 0.46 (0.35–0.55) 0.54 (0.45–0.65)
SDNN 0.54 (0.44–0.62) 0.46 (0.38–0.56)

Note. df = degrees of freedom; Model = specification of the model that is tested; AIC = Akaike’s Information Criterion; −2LL = minus twice the logarithm
of the likelihood; vs. = the model against which this submodel is tested; Δχ2 = model fit statistic: difference in −2LL of two nested models; Δdf = difference
in the number of parameters between the two models; p = p value; phenotype = specification of the HRV parameter; A and E = proportions of variance
explained by additive and unique environmental effects for the most parsimonious AE model; pvRSA = peak-valley respiratory sinus arrhythmia;
RMSSD = root mean square of differences between valid successive interbeat intervals (IBIs); SDNN = standard deviation of all valid IBIs.
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laboratory situations was not recaptured by a nighttime–daytime
effect. Instead, the genetic variance was rather stable across the
24-h period. This finding was supported by previous analyses
within a subset of the present sample in which we did not observe
significant differences in heritability estimates across different
times of day (Kupper et al., 2004, 2005). This raises the important
but possibly misleading question of which of these two paradigms
is “right.” The ambulatory situation is by definition a less stand-
ardized setting compared to the laboratory setting in which physi-
cal activity and postures can be carefully controlled. On the other
hand, ambulatory 24-h measurements in real life may give a better
reflection of the actual day-to-day situation of participants and
thereby capture daily life better. Cardiac recordings in an ambula-
tory setting presumably also contribute more reliably to risk pre-
diction compared to a recording in the laboratory, which is
generally shorter and more sensitive to momentary or lab-specific
influences (e.g., the white coat effect; Zanstra & Johnston, 2011).
Although not tested here, it would be interesting to elaborate on
this topic and explore different operationalizations of real-life reac-
tivity in future research.

Previous research has already shown that RSA can be reliably
measured under naturalistic conditions with the use of ambulatory
monitoring (de Geus et al., 1995; Wilhelm, Roth, & Sackner,
2003). Such recordings yield large individual differences in RSA

that appear to reflect stable trait characteristics. For the average
24-h levels of RSA, high test-retest correlations (.63 < r < .90)
have been found after 3 to 65 days in both healthy individuals and
cardiac patients (Bigger, Jr., et al., 1992; Hohnloser, Klingenheben,
Zabel, Schroder, & Just, 1992; Kleiger et al., 1991; Sinnreich,
Kark, Friedlander, Sapoznikov, & Luria, 1998; Stein, Rich,
Rottman, & Kleiger, 1995), and moderate-to-high long-term tem-
poral stability (.58 < r < .76) has been shown over periods of 7
months to 3.4 years (Goedhart et al., 2007; Pitzalis et al., 1996).
Our results corroborate the stability of these individual differences
and suggest that they have a genetic basis.

In keeping with the substantial genetic contribution found
across different samples and the proven reliability of the assess-
ment of RSA over time, several studies have tried to identify the
actual genetic variants underlying RSA heritability. These mainly
concerned candidate gene studies, in which a few genes were
selected based on their known involvement in processes leading to
differences in HRV levels. Candidate gene studies have found the
angiotensin-converting enzyme (ACE; Busjahn et al., 1998),
alpha-kinase anchoring protein 10 (AKAP 10; Neumann et al.,
2009; Tingley et al., 2007), methylene-tetrahydrofolate reductase
(MTHFR; Baccarelli et al., 2008), the circadian clock gene
PERIOD3 (PER3) (Viola, James, Archer, & Dijk, 2008), and the
brain-derived neurotrophic factor (BDNF; Yang et al., 2010) to be

Table 4. Phenotypic and Genetic Correlation Between Dyads of RSA Measures and % of Covariance Explained by Overlapping Genetic
Factors

4a. Full sample (1,232 < N < 1,288)

Phenotypic correlation Genetic correlation
Contribution of A to the
phenotypic covariance

Unique environmental
correlation

Contribution of E to the
phenotypic covariance

Sleep
pvRSA–RMSSD 0.82 (0.80–0.84) 0.85 (0.80–0.90) 52% (41–62%) 0.79 (0.74–0.83) 48% (38–59%)
RMSSD–SDNN 0.84 (0.82–0.85) 0.87 (0.82–0.91) 51% (40–61%) 0.81 (0.76–0.85) 49% (39–60%)
pvRSA–SDNN 0.57 (0.53–0.61) 0.63 (0.50–0.74) 52% (37–65%) 0.51 (0.42–0.60) 48% (35–63%)

Sitting
pvRSA–RMSSD 0.89 (0.88–0.91) 0.94 (0.91–0.96) 56% (47–65%) 0.85 (0.81–0.87) 44% (35–53%)
RMSSD–SDNN 0.86 (0.84–0.87) 0.89 (0.84–0.92) 53% (43–62%) 0.83 (0.79–0.86) 47% (38–57%)
pvRSA–SDNN 0.70 (0.67–0.73) 0.74 (0.65–0.81) 54% (42–64%) 0.66 (0.59–0.72) 46% (36–58%)

Active
pvRSA–RMSSD 0.86 (0.84–0.87) 0.91 (0.87–0.94) 56% (46–64%) 0.80 (0.76–0.84) 44% (36–54%)
RMSSD–SDNN 0.81 (0.79–0.83) 0.84 (0.79–0.88) 53% (43–61%) 0.78 (0.73–0.82) 47% (39–57%)
pvRSA–SDNN 0.68 (0.65–0.71) 0.66 (0.58–0.73) 53% (42–63%) 0.71 (0.65–0.77) 47% (37–58%)

Note. pvRSA = peak-valley respiratory sinus arrhythmia; RMSSD = root mean square of differences between valid successive interbeat intervals (IBIs);
SDNN = standard deviation of all valid IBIs.

4b. Participants with Ceiling Effects Excluded (1,100 < N < 1,104)

Phenotypic correlation Genetic correlation
Contribution of A to the
phenotypic covariance

Unique environmental
correlation

Contribution of E to the
phenotypic covariance

Sleep
pvRSA–RMSSD 0.82 (0.80–0.84) 0.85 (0.78–0.89) 55% (43–65%) 0.79 (0.73–0.83) 45% (35–57%)
RMSSD–SDNN 0.83 (0.81–0.85) 0.87 (0.81–0.92) 52% (40–63%) 0.80 (0.74–0.84) 48% (37–60%)
pvRSA–SDNN 0.57 (0.53–0.61) 0.63 (0.50–0.74) 55% (39–69%) 0.52 (0.41–0.61) 45% (31–61%)

Sitting
pvRSA–RMSSD 0.90 (0.89–0.91) 0.94 (0.91–0.96) 57% (45–66%) 0.85 (0.81–0.89) 43% (34–55%)
RMSSD–SDNN 0.85 (0.83–0.86) 0.88 (0.83–0.92) 51% (39–61%) 0.81 (0.77–0.85) 49% (39–61%)
pvRSA–SDNN 0.70 (0.66–0.73) 0.75 (0.65–0.82) 55% (41–66%) 0.65 (0.57–0.73) 45% (34–59%)

Active
pvRSA–RMSSD 0.86 (0.84–0.87) 0.92 (0.88–0.95) 55% (43–65%) 0.80 (0.75–0.84) 45% (35–57%)
RMSSD–SDNN 0.80 (0.78–0.82) 0.82 (0.76–0.87) 51% (39–61%) 0.79 (0.73–0.83) 49% (39–61%)
pvRSA–SDNN 0.68 (0.64–0.71) 0.63 (0.54–0.71) 52% (39–63%) 0.73 (0.66–0.79) 48% (37–61%)

Note. pvRSA = peak-valley respiratory sinus arrhythmia; RMSSD = root mean square of differences between valid successive interbeat intervals (IBIs);
SDNN = standard deviation of all valid IBIs.
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associated with RMSSD and/or SDNN levels. Candidate gene
studies do, however, need to be interpreted with caution before they
have been confirmed in independent replication (Sullivan, 2007),
and, ideally, functional studies exist that confirm a plausible
pathway through which the genetic variant can influence RSA. In
that sense, of all candidates found, the evidence of AKAP10 to be
involved in HRV levels is strongest as its involvement was con-
firmed in animal research, as well (Tingley et al., 2007). Candidate
gene studies are by definition confined to current knowledge, and
are selected from the biological mechanisms already expected to be
involved in heart rate regulation. In genome-wide association
studies (GWAS), no a priori assumptions concerning biological
mechanisms are made, and the entire genome is considered to be a
“candidate” (Manolio et al., 2009; Tabor, Risch, & Myers, 2002).
To our knowledge, the Framingham Heart Study is the only group

that has performed a GWAS on HRV thus far, but none of the
associations reached genome-wide significance (Newton-Cheh
et al., 2007). The sample studied was, however, small (N = 548).
In a secondary analysis, this group did find significant candidate
gene associations between the alpha-adrenergic receptor type
1A (ADDRA1A) and the alpha-adrenergic receptor type 1B
(ADRA1B) genes and SDNN at p < .05. However, to be able to find
genome-wide significant hits, analyses on tens of thousands of
participants are needed for which whole genome single nucleotide
polymorphism and HRV data is available. Because no single
research group can mount such numbers, the Genetic Variability in
Heart Rate Variability (VgHRV) consortium was set up with the
aim to share association results between different research groups
and perform across-study meta-analyses on HRV (Nolte et al.,
2011). This solves the problem of small sample sizes but may

Table 5. Model Fit Statistics and Variance Decomposition (CI) for the Univariate pvRSA Measure, Correcting for Ceiling Effects

5a. Maximal pvRSAmax Obtained During the Night

Phenotype Model df Model AIC −2LL vs. Δχ2 Δ df p A E

pvRSAmax 1 1230 ACE −1641.008 818.992
2 1231 AE −1643.008 818.992 1 0 1 1 0.53 (0.42–0.62) 0.47 (0.38–0.58)
3 1232 E −1570.323 893.677 1 74.685 2 .000

Note. pvRSAmax = median value of the six 10-min bins with the highest pvRSA value during the night; df = degrees of freedom; Model = specification of
the model that is tested; AIC = Akaike’s Information Criterion; −2LL = minus twice the logarithm of the likelihood; vs. = the model against which this
submodel is tested; Δχ2 = model fit statistic: difference in −2LL of two nested models; Δdf = difference in the number of parameters between the two models;
p = p value; A and E = proportions of variance explained by additive and unique environmental effects for the most parsimonious AE model.

5b. Virtual pvRSAmax Extrapolated from the Daytime IBI-RSA Intercept and Slope to the Maximal IBI Obtained During the Night

Phenotype Model df Model AIC −2LL vs. Δχ2 Δ df p A E

pvRSAmax
_virtual

1 1230 ACE −1376.033 1083.967
2 1231 AE −1378.033 1083.967 1 0 1 1 0.55 (0.45–0.64) 0.46 (0.36–0.55)
3 1232 E −1296.892 1167.108 1 83.141 2 .000

Note. pvRSAmax_virtual = nonobserved experimental variable that extrapolates the pvRSA from the intercept and slope of the daytime IBI-RSA association
during sitting activities to the value that would have been obtained at the nighttime 10-min bin with the longest IBI value (IBImax); df = degrees of freedom;
Model = specification of the model that is tested; AIC = Akaike’s Information Criterion; −2LL = minus twice the logarithm of the likelihood; vs. = the model
against which this submodel is tested; Δχ2 = model fit statistic: difference in −2LL of two nested models; Δdf = difference in the number of parameters
between the two models; p = p value; A and E = proportions of variance explained by additive and unique environmental effects for the most parsimonious
AE model.

5c. Maximal IBI Obtained During the Night

Phenotype Model df Model AIC −2LL vs. Δχ2 Δ df p A E

IBImax 1 1282 ACE −3918.594 −1354.594
2 1283 AE −3920.412 −1354.412 1 0.182 1 .670 0.52 (0.43–0.60) 0.48 (0.40–0.57)
3 1284 E −3814.549 −1246.549 1 108.45 2 .000

Note. IBImax = nighttime 10-min bin with the longest IBI value; df = degrees of freedom; Model = specification of the model that is tested; AIC = Akaike’s
Information Criterion; −2LL = minus twice the logarithm of the likelihood; vs. = the model against which this submodel is tested; Δχ2 = model fit statistic:
difference in −2LL of two nested models; Δdf = difference in the number of parameters between the two models; p = p value; A and E = proportions of
variance explained by additive and unique environmental effects for the most parsimonious AE model.

5d. Daytime RSA-IBI Slope

Phenotype Model df Model AIC −2LL vs. Δχ2 Δ df p A E

daytime
_slope

1 1282 ACE −1113.303 1450.697
2 1283 AE −1115.303 1450.697 1 0 1 1 0.35 (0.25–0.44) 0.65 (0.56–0.75)
3 1284 E −1072.076 1495.924 1 45.227 2 .000

Note. daytime_slope = slope of the IBI-RSA curve in the waking part of the data; df = degrees of freedom; Model = specification of the model that is tested;
AIC = Akaike’s Information Criterion; −2LL = minus twice the logarithm of the likelihood; vs. = the model against which this submodel is tested;
Δχ2 = model fit statistic: difference in −2LL of two nested models; Δdf = difference in the number of parameters between the two models; p = p value; A and
E = proportions of variance explained by additive and unique environmental effects for the most parsimonious AE model.
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introduce yet another pitfall, namely, the lack of unity regarding the
HRV measures that are used across different studies. With this
study, we show that the genetic overlap between pvRSA and
RMSSD, and RMSSD and SDNN, is high (genetic correlations are
estimated at .94 and .89 in resting ambulatory sitting conditions)
while the genetic overlap between pvRSA and SDNN, albeit lower,
was still .74. From this, it follows that HRV studies that assessed
pvRSA and RMSSD, or RMSSD and SDNN, can be safely pooled
as the genetic architecture is expected to be highly similar.

A major limitation of this study is that exercise status was not
obtained for all participants at the time of testing. Therefore, we
cannot rule out that exercise status may explain part of the herit-
ability that is found for HRV, since previous work has shown that
exercise behavior and RSA are genetically correlated (de Geus,
Boomsma, & Snieder, 2003). A second limitation is that we used a
crude approach in pooling all 24-h HRV data in only three ambu-
latory conditions (sleep, sitting, or physically active), thereby
potentially introducing heterogeneity within conditions, consider-
ing the wide range of activities that meet these criteria. This may be
particularly pertinent for physical activity, where the range of
variety is largest. On the other hand, ambulatory activities need to
be generalized to some extent to make data of different participants
comparable. Finally, as nighttime HRV recordings in twins and
siblings, to our knowledge, have only been performed by our

group, we cannot compare our results to those of independent twin
studies.

The major strength of this study is that this is the largest 24-h
ambulatory cardiac monitoring sample to date in which the herit-
ability of three widely accepted HRV measures is studied, includ-
ing pvRSA, which is taken to be the most “pure” HRV measure.
Additionally, for the first time, within-participant IBI-RSA asso-
ciations were inventoried to assess ceiling status, and the impact of
this potential confounding factor on the heritability estimates has
now been thoroughly tested.

We conclude that about half of the variation that is seen in the
levels of the three HRV measures that are currently used most in the
fields of cardiology and psychophysiology is genetically deter-
mined in the healthy adult population. The heritability estimates
were robust against confounding by IBI-RSA ceiling effects that
were observed in a subgroup of participants that took part in the
study. There is no pressing need to exclude these participants, who
may be overrepresented among healthy exercisers, in genetic
studies of HRV. The genetic overlap between the three RSA meas-
ures studied is large, especially for pvRSA and RMSSD and
RMSSD and SDNN, thereby implicating that these measures can
be pooled in future GWASs to obtain larger sample sizes and
increase power to find the actual genetic variants being responsible
for individual differences in cardiac vagal control.
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